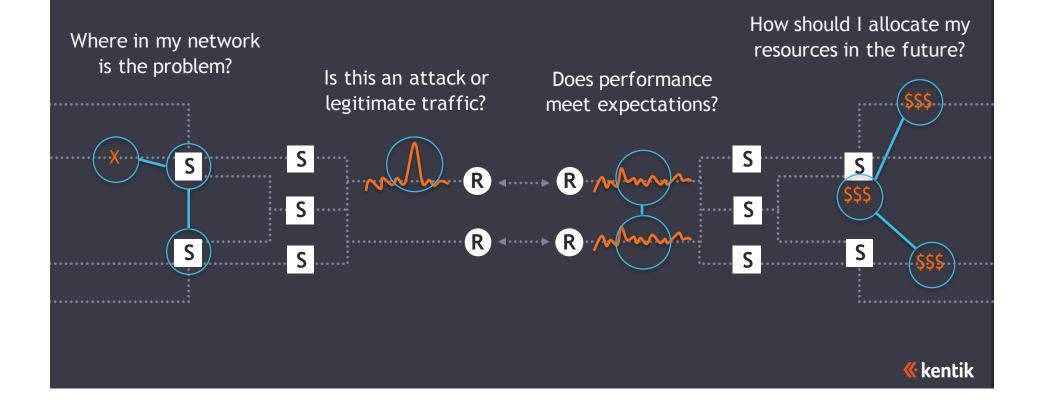
« kentik

Cloud-Scale BGP and NetFlow Analysis

Jim Frey, VP Product, Kentik Technologies December 15, 2015


Agenda

- Common NetOps Stress points
- Helpful Data Sets NetFlow, BGP
- Handling NetFlow and BGP at Cloud Scale
- Kentik's Approach
- Wrap-Up / Q&A

NetOps Stress Points: Needing Instant Answers

Things You Need Answers to About/From Your Network

What We Hear....

To Address These Questions, NetOps Needs:

- Accurate Visibility, Without Delay
- Relevant Alerts: No False Positives or Negatives
- Complete Data: Breadth + Depth
- Fast/Flexible Data Exploration
- Tools that don't suck (time or \$\$)

What Data Sets Can Help?

And which ones can do the job cost effectively?

Primary Network Monitoring Data Choices

Polled Stats

Examples

- SNMP, WMI

Advantages

- Ubiquitous
- Good for monitoring device health/status/activity

Disadvantages

- No traffic detail
- Typically no frequent than every 5 minutes truly antireal-time

Flow Records

Examples

- NetFlow, sFlow, IPFIX

<u>Advantages</u>

- Details on traffic src/dest/content, etc.
- Very cost effective

<u>Disadvantages</u>

- NRT (near real-time) at best
- Incomplete app-layer detail
- Limited performance metrics
- Data volumes can be massive

Packet Inspection

Examples

- Packets -> xFlow
- Long term stream-to-disk

<u>Advantages</u>

- Most complete app layer detail
- True real-time (millisecond lvl)
- Complete vendor independent

Disadvantages

- Expensive to deploy at scale
- Requires network tap or SPAN
- Packet captures can be massive

Secondary Network Monitoring Data Choices

Log Records

Examples

- Syslog

Advantages

- Continuous/streaming
- Unique, device-specific info
- True real-time

Disadvantages

- No standards must have very flexible search/mapping tools
- Data volumes can be massive

Routing/Path Data

Examples

- OSPF, IGRP, BGP

<u>Advantages</u>

- Details on traffic paths and provider volumes
- Insights into Internet factors

<u>Disadvantages</u>

- Address data only no awareness of traffic
- Must peer with routers to get updates

Synthetic Agents

Examples

- IP SLA, Independent test sw

Advantages

- Assess functions/services 24x7
- Provides both availability and performance measures

Disadvantages

- Deploying/maintaining enough agents to achieve full coverage
- Only an approximation of real user experience (at best)

Key Assertion:

Use Multiple Data Types for Best Results

- You never know which data set will present the specific insights you need
- The challenge (real magic) comes from correlating multiple datasets, i.e.:
 - Behavioral observations with configuration changes
 - Trends with underlying traffic details
 - Routing data with traffic data

Why Correlate Routing Data with Traffic Data?

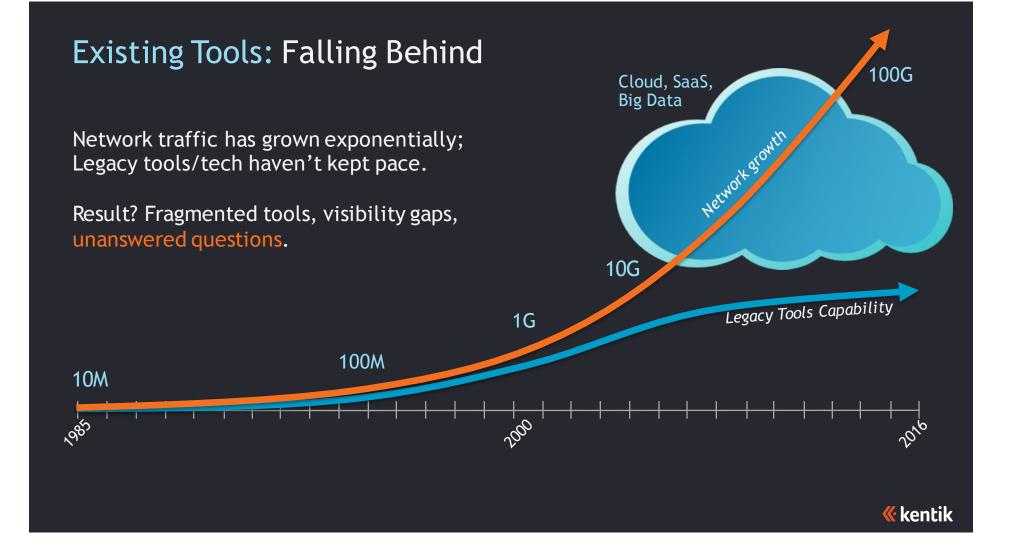
For Providers

- Recognizing new service opportunities based on subscriber (and peer) behavior
- Optimizing peering relationships for cost control

For Web Services / Commerce

- Recognizing where your customers are and how they reach you
- Managing peering relationships for best customer experience

For Enterprise


- Assessing how your connectivity providers perform/compare
- Building Internet IQ how you connect/relate to the outside world

Cloud Scale for NetFlow and BGP: The Big Data Challenge

Why can't we just use our existing tools?

Why Big Data?

- Network Monitoring Data /S Big Data
 - Meets Volume/Variety/Velocity Test
 - Billions of records/day (millions/second)
- Big Data architectures are considered best practices today for open/flexible correlation, analytics

Why Big Data?

- Network Monitoring Data /S Big Data
 - Meets Volume/Variety/Velocity Test
 - Billions of records/day (millions/second)
- Big Data architectures are considered best practices today for open/flexible correlation, analytics

Specific Challenges For NetFlow + BGP

Existing solutions shortfalls:

- Flexibility for moving between viewpoints and into full details
- Data Completeness due to reliance on summarized/aggregated flow data
- Speed: Generating new analysis in a timely manner

How to Get/Use Big Data Approach?

14

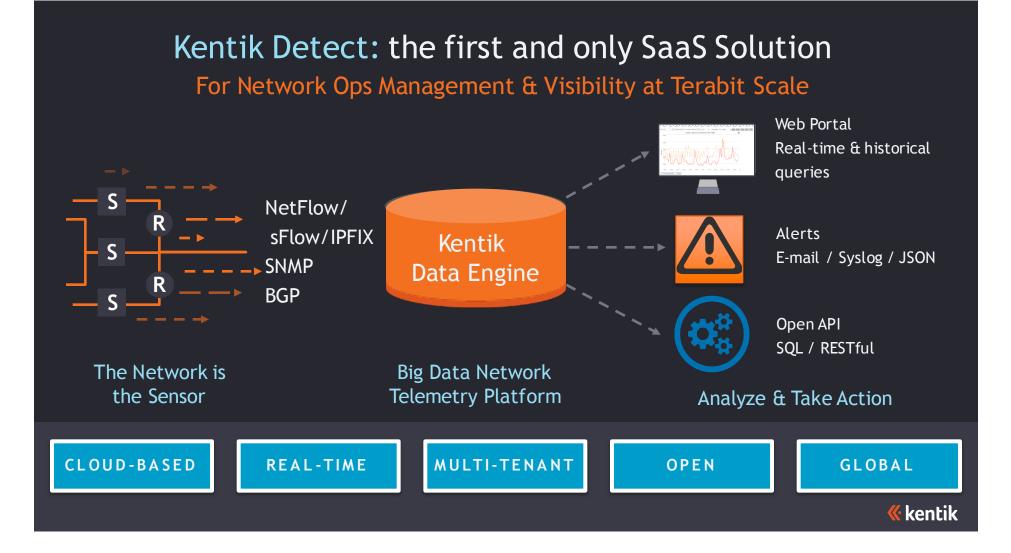
How to Get/Use Big Data Approach?

1. BYO - Build Your Own

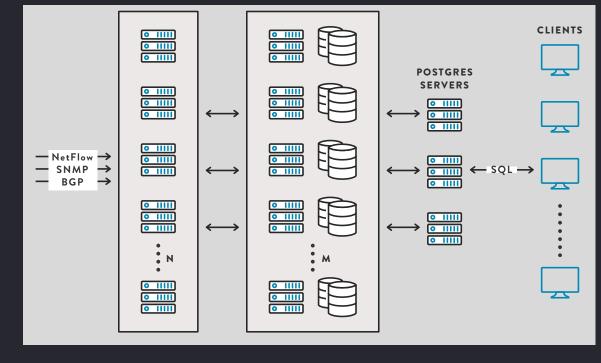
- Pick back end & reporting/analysis tools (open source = free?)
- Procure operating platforms (hard, virtual, or cloud servers = \$\$)
- Integrate, add data sources, and get it up and running (dev = \$\$)
- Keep it up and running (ops/admin = \$\$)

How to Get/Use Big Data Approach?

1. BYO - Build Your Own

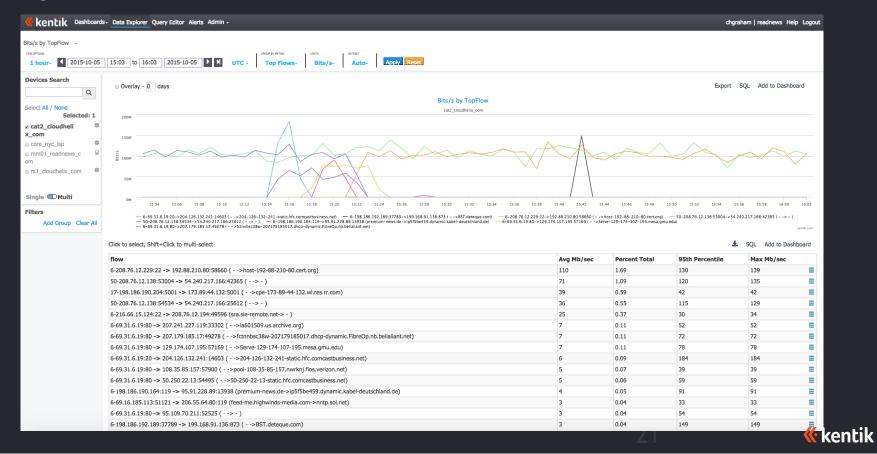

- Pick back end & reporting/analysis tools (open source = free?)
- Procure operating platforms (hard, virtual, or cloud servers = \$\$)
- Integrate, add data sources, and get it up and running (dev = \$\$)
- Keep it up and running (ops/admin = \$\$)
- 2. Let SOMEONE ELSE build/optimize/operate
 - Subscribe to SaaS (ops \$\$)
 - Just Send Your Data and enjoy the ride!

Kentik's Answer

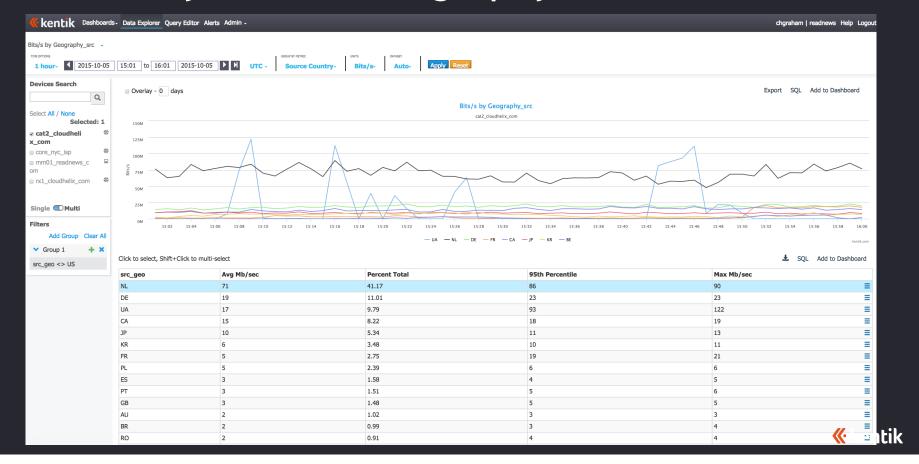

How we address the Big Data challenge to meet the needs of Network Operators now

What's Behind the Kentik Data Engine

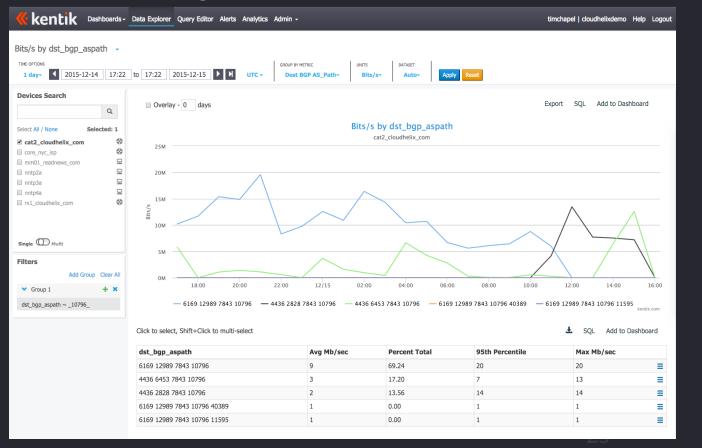
Multi-tiered/Clustered for Scale / Load Balancing / HA, Hosted by Kentik


Optimized for Massive Data Ingest & Rapid Query Response

Kentik Portal Dashboard

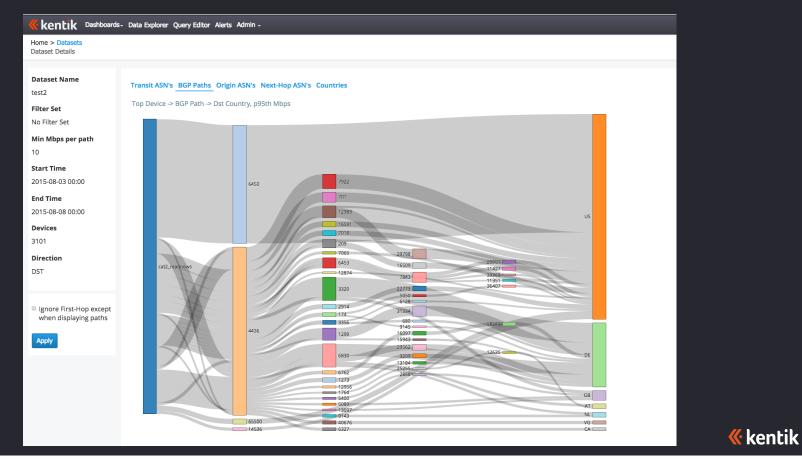

kentik Dashboards- Data Explorer Query Editor Alerts Admin democh | Help Logout Dashboards - BGP Metrics Highwinds AS 29798 Edit Dashboard 🔀 Toggle Sidebar AS Path changes Ingress interface TIME OPTION cat2_cloudhelix_com cat2_cloudhelix_com UTC -1 hour-2.500N 2.500M Start 2015-10-05 2.000M 2.000M 15:06 End 2015-10-05 1,500M gits/s , 1,500M 16:06 1,000N 1,000M A N Apply 500M 500M **Devices Search** OM 0М Q 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05 — 4436 12989 2979 — 6450 — 14536 Vlan1061 : hw-p Vlan5 : dan-Tes — Vlan610 : radam kentik.com kentik.com Select All / None Selected: 1 æ ☑ cat2_cloudheli Egress interface Egress Region **Ingress Region** x_com cat2_cloudhelix_com cat2_cloudhelix_com cat2_cloudhelix_com 8 2.500M core_nyc_isp 2.500M 2.500M mm01_readnews_c 2.000M 2.000M 2.000M om $\wedge \wedge \wedge$ rx1_cloudhelix_com s/\$1,500M s 1,500M ,500M Single 🛈 Multi 1.0008 1,000M 1,000M 500N 500M 500M 0M 0M 0M 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05 - Vlan5 : dan-Tes - Vlan134 : ras-p - Vlan610 : radam - California - Wisconsin - Arizona - Florida - Pennsylvania - Ohio kentik.com — Florida — Arizona — California — Wisconsin — Pennsylvania - Ohio

« kentik


Top Traffic Flows

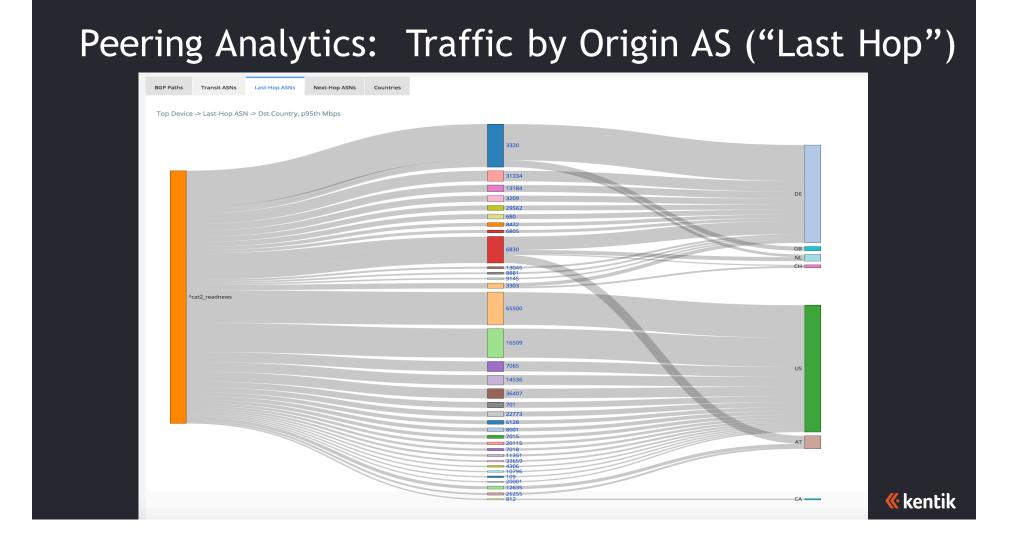
Traffic by Source Geography

AS Path Changes

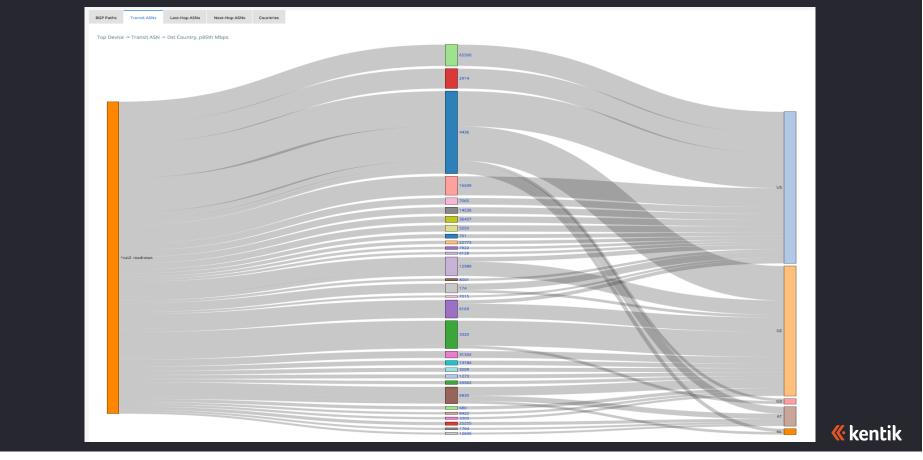


« kentik

AS Top Talkers and Drill Down Options


kentik Dashboards - Data Explorer Query Editor Alerts Admin chgraham | readnews Help Logout Bits/s by ASTopTalkers TIME OPTION GROUP BY METRIC DATASET UNITS 2015-10-05 14:51 to 15:51 2015-10-05 **V** 1 ho Bits/s-UTC -AS -> AS-Auto Apply Source Country **Devices Search** Overlay - 0 days Destination Region Export SQL Add to Dashboard Q Full City TopTalkers AS Number Select All / None Selected: 1 helix_com Interface cat2_cloudhelix_com 8 2.500M core_nyc_isp 8 Port mm01 readnews com MAC Address 2.000M 8 rx1_cloudhelix_com VI AN 1.500M IP/CIDR Route Prefix/LEN 1,000M Route LEN **BGP** Community 500M BGP AS_Path Single 🔘 Multi 0M BGP Next Hop IP/CIDR 14:52 14:54 14:56 14:58 15:00 15:02 15:04 15:06 15:08 15:20 15:22 15:24 15:26 15:28 15:30 15:32 15:34 15:36 15:38 15:40 15:42 15:44 15:46 15:48 15:50 Next Hop AS Number Filters HIGHWINDS5 - Highwinds Network Group, Inc., US (29798) ->PIXNET-/
HWNG Eweka Internet Services B.V., NL (12989) ->KABELDEUTSCHLAND 6450) — PIXNET-AS - Providers Internet Exchange,US (6450) ->DTAG Deutsche Telekom AG,DE (3320) 2nd BGP_HOP AS Number Add Group Clear All nd Service GmbH,DE (31334) HWNG Eweka Internet Services B.V., NL (12989) ->LGI-UPC Liberty Glot 3rd BGP_HOP AS Number PIXNET-AS - Providers Internet Exchange,US (6450) ->ATT-INTERNET4 - AT&T Services, Inc.,US (7018) - PIXNET-AS - Providers Internet Exchange, US (6450) ->LGI-UPC Libert PIXNET-AS – Providers Internet Exchange,US (6450) –>KABELDEUTSCH Protocol: IP Port eb und Service GmbH,DE (31334) PIXNET-AS – Providers Internet Exchange, US (6450) –>UUNET – MCI C a Verizon Business.US (701) kentik.com Click to select, Shift+Click to multi-select Ŧ SQL Add to Dashboard Ava Percent 95th Max astoptalkers Mb/sec Total Percentile Mb/sec HIGHWINDS5 - Highwinds Network Group, Inc., US (29798) -> PIXNET-AS - Providers Internet Exchange, US (6450) 1,790 28.45 2,115 2,226 ≡ ≡ PIXNET-AS - Providers Internet Exchange, US (6450) -> DTAG Deutsche Telekom AG, DE (3320) 366 5.80 489 531 entik ▓≘ः HWNG Eweka Internet Services B.V., NL (12989) -> KABELDEUTSCHLAND-AS Kabel Deutschland Vertrieb und Service GmbH, DE (31334) 237 350 3.76 316

Peering Analytics: ASN by Dest Country Paths



Peering Analytics: Traffic by BGP Paths

Peering Analytics: Traffic by Transit AS

Key Takeaways: Cloud Scale NetFlow + BGP

Why You Need It

- Clear Insight into external/Internet network traffic behaviors
- Improved customer/subscriber engagement
- Reduced network operating costs

Technical Path to Success

- This is a big data problem, requiring high capacity/speed for data management, correlation, exploration, and analytics
- SaaS solutions are a fully viable option

Network Intelligence at Terabit Scale

Thank You!

Jim Frey VP Product Kentik Technologies jfrey@kentik.com @jfrey80